Step of Proof: member_nth_tl
11,40
postcript
pdf
Inference at
*
2
2
2
I
of proof for Lemma
member
nth
tl
:
.....falsecase..... NILNIL
1.
T
: Type
2.
n
:
3. 0 <
n
4.
x
:
T
,
L
:(
T
List). (
x
nth_tl(
n
- 1;
L
))
(
x
L
)
5.
x
:
T
6.
T
List
7.
u
:
T
8.
v
:
T
List
9. (
x
nth_tl(
n
;
v
))
(
x
v
)
10. 0 <
n
(
x
nth_tl(
n
- 1;tl([
u
/
v
])))
(
x
[
u
/
v
])
latex
by ((Reduce 0)
CollapseTHEN (Auto
))
latex
C
1
:
C1:
11. (
x
nth_tl(
n
- 1;
v
))
C1:
(
x
[
u
/
v
])
C
.
Definitions
tl(
l
)
,
[
car
/
cdr
]
,
P
Q
,
type
List
,
a
<
b
,
,
Type
,
(
x
l
)
,
nth_tl(
n
;
as
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
s
=
t
,
n
-
m
,
t
T
,
#$n
Lemmas
l
member
wf
,
nth
tl
wf
origin